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Abstract

A dynamic modeling method of an axially oscillating beam undergoing periodic impulsive force is proposed in the

present work. An element-specific modeling method using a stretch deformation variable is employed to derive the linear

equations of motion. The stiffness variation effect induced by the periodic impulsive force as well as the axially oscillating

motion is included in the linear equations of motion. The accuracy of the proposed modeling method is verified by

comparing its numerical solutions to those of a nonlinear finite element code. The effects of the impulse magnitude, the

oscillating frequency, the oscillating speed amplitude and the modal damping ratio on the dynamic stability of the beam

are investigated with the modeling method.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The axially oscillating motion of a cantilever beam results in bending stiffness variation. If a cantilever beam
accelerates toward its free end, the bending stiffness decreases due to compression. However, if the cantilever
beam accelerates toward its fixed end, the bending stiffness increases due to stretching. Therefore, the axially
oscillating motion of a cantilever beam results in an oscillating time-varying bending stiffness. The oscillating
stiffness can cause unstable resonance-like phenomena, which differ from normal resonance, in certain
frequency ranges. Such a system with oscillating time-varying stiffness is called a parametrically excited system
and the resonance-like phenomena are called parametric resonance.

The needle of a high-speed sewing machine is a typical example of a cantilever beam undergoing axially
oscillating motion. The average operating speed of the latest high-speed sewing machine is around
3000–4000 rev/min with the maximum speed often reaching 10,000 rev/min. The needle’s bending stiffness of a
high-speed sewing machine is designed considerably high. Therefore, unless the needle is improperly designed,
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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an unstable dynamic response of a needle due to normal or parametric resonance rarely occurs. However, if
the oscillating frequency needs to be increased for better productivity, the designer of the needle should be
careful to avoid parametric resonance phenomena.

When the needle of a high-speed sewing machine penetrates a fabric, it undergoes a periodic impulsive force
due to its periodic oscillating motion. Thus, the period of the impulsive force applied to the needle is equal to
that of the needle’s oscillating motion. For high-speed operation, the impulsive force due to the needle’s
penetration has a considerable magnitude. The stability characteristics of the needle could be significantly
influenced by the periodic impulsive force as well as the axially oscillating motion. Therefore, the impulsive
force and the oscillating motion which induce the bending stiffness variation need to be considered
simultaneously for the stability analysis of the oscillating needle.

The magnitude of the impulsive force reaches a quite large value within a very short duration, several tens or
hundreds of micro-seconds. The abrupt change of the impulsive force often causes serious problems when the
equations of motion are solved numerically. Furthermore, the impulsive force usually has a complicated, non-
smooth, and even uncertain shape. To obtain the dynamic response effectively during the short duration of the
impulsive force, it is desirable to employ an impulse and momentum principle rather than the equations of
motion. While the impulsive force is not acting on the system, however, it is desirable to employ the ordinary
differential equations of motion.

Study on parametrically excited systems began early in 1831 by Faraday [1], and fundamental mathematical
bases to investigate the stability of the parametrically excited system were established in the late 19th century by
Mathieu [2] and Hill [3]. More advanced methods such as perturbation methods (for instance, see the work by
Nayfeh and Mook [4]) were introduced later to investigate the stability of parametrically excited systems. By
employing these methods, principal and combinatory parametric resonance regions could be found effectively. The
dynamic stability of a beam undergoing periodic axial force, for instance, was analyzed by Beal [5].

For the modeling of structures undergoing overall motion, a number of structural modeling methods have
been proposed. Several nonlinear modeling methods (see, for instance, the works by Christensen and Lee [6]
and Simo and Vu-Quoc [7]) were proposed to capture the motion-induced stiffness variation effects. For the
parametric excitation problems, nonlinear responses of slender beams carrying a lumped mass were
investigated by Zavodney and Nayfeh [8] and Dwivedy and Kar [9,10]. In these works, the translational base
motion was prescribed and the governing equations of motion retaining up to cubic nonlinear terms were
derived. The method of multiple scales along with the numerical integration technique was employed to
analyze the stability of the system. More recently, the combined effect of magnetic field and the periodic axial
load was investigated by Pratiher and Dwivedy [11].

Even though many nonlinear models were developed and effectively employed for the stability analysis of a
beam undergoing overall base motion, their governing equations were complicated due to the nonlinearity.
Moreover, relatively higher computational costs were required for the nonlinear analysis. To overcome the
drawbacks of the nonlinear modeling methods, element-specific linear modeling methods were proposed for
beams and plates undergoing overall motion by Kane et al. [12], Yoo et al. [13], Seo and Yoo [14], and Yoo
and Chung [15]. These modeling methods employ one or two non-Cartesian deformation variables and
successfully capture the motion-induced stiffness variation effects. In Refs. [16,17], for instance, the modal
characteristics of rotating cantilever beams and rotating cantilever plates were obtained successfully with the
linear modeling methods. The modeling method introduced in Ref. [13] was also successfully employed to
analyze the stability characteristics of an axially oscillating beam by Hyun and Yoo [18] and a beam with
rotary oscillation by Chung et al. [19]. In these works, however, neither the repeated impulsive force effect nor
the damping effect on the stability characteristics was investigated.

The purpose of the present study is to propose an accurate and efficient linear modeling method with which
the stability of an axially oscillating beam undergoing periodic impulsive force can be effectively analyzed. The
stiffness variation effect induced by the periodic impulsive force, which has never been studied by previous
researchers so far, is the key ingredient of the proposed modeling method. To obtain more general
conclusions, dimensionless equations of motion are derived and four dimensionless parameters are identified.
The effects of the four dimensionless parameters related to the impulse magnitude, the oscillating frequency,
the oscillating speed amplitude and the modal damping ratio on the dynamic stability of the beam are
investigated numerically. The accuracy of the linear modeling method is verified with a comparison study.
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2. Derivation of the equations of motion

Fig. 1 shows a cantilever beam attached to a rigid base A* (the attached point is O) that undergoes an
axially oscillating harmonic motion. The beam is characterized by length L, cross sectional area A, area
moment of inertia I, Young’s modulus E, and mass per unit length r. A periodic impulsive force is applied to
the free end (point Q) of the beam and the period of the force is same as that of the oscillating motion. If the
first impulsive force is applied at t ¼ 0, the repeated impulsive force can be expressed as

P1
k¼0I0dðt� ktI Þ

where I0 and d respectively denote the impulse generated by the impulsive force and the Dirac delta function.
The magnitude of the Dirac delta function remains zero unless t is equal to ktI where tI denotes the period of
the impulsive force and k denotes an integer number. The elastic displacement of a generic point P of the beam
can be expressed by two Cartesian deformation variables u1 and u2. In the present work, however, the
equations of motion are derived by employing a non-Cartesian deformation variable s representing the stretch
along the beam axis. The stretch deformation variable s along with the bending deformation variable u2 is
approximated as follows:

s ¼
Xm1
i¼1

f1iðxÞq1iðtÞ (1)

u2 ¼
Xm2
i¼1

f2iðxÞq2iðtÞ (2)

where f1i(x) and f2i(x) denote the mode functions for s and u2; q1i(t) and q2i(t) denote the generalized
coordinates; and m1 and m2 denote the numbers of the generalized coordinates q1i(t) and q2i(t), respectively.

The velocity of the generic point P can be obtained as follows:

~vP
¼ ðv1 þ _u1Þâ1 þ _u2â2 (3)

where v1 represents the axially oscillating speed of point O, which can be expressed as

v1 ¼ v sin ot (4)

where v and o denote the amplitude and the frequency of the oscillating motion.
Oscillating
Rigid base A*

a2
^

a1
^

x + sx

P0 u P

Q

I0 � (t − ktI)

O

Fig. 1. Configuration of an axially oscillating cantilever beam.
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Since u1 is not employed for the assumed mode approximation, _u1 in Eq. (3) should be substituted by _s and
_u2. The following geometric relation can be employed for the purpose:

xþ s ¼

Z x

0

1þ
qu1

qz

� �2

þ
qu2

qz

� �2
" #1=2

dz (5)

where z denotes a dummy variable used for the integral. Using Taylor’s series expansion (considering up to the
second degree terms), the above equation can be approximated as

s � u1 þ
1

2

Z x

0

qu2

qz

� �2

dz (6)

Therefore the velocity of the generic point P can be expressed as follows:

~vp
¼ v sin otþ _s�

Z x

0

qu2

qz

� �
q _u2

qz

� �
dz

� �
â1 þ _u2â2 (7)

By employing Eq. (7), the partial derivatives of ~vP with respect to the generalized speeds _q1i and _q2i can be
obtained as follows:

q~vP

q _q1i

¼ f1i â1;
q~vP

q _q2i

¼ �
Xm2
j¼1

Z x

0

ðf2i;zf2j;zÞdzq2j

" #
â1 þ f2iâ2 (8)

Now linearizing Eq. (7) and differentiating the linearized equation with respect to time, the linearized
acceleration of the generic point P can be obtained as follows:

~aP
¼ ðvo cos otþ €sÞâ1 þ €u2â2 (9)

If Kane’s method [20] is employed, the equations of motion can be obtained with the following equation:

Fi þ F�i ¼ 0 ði ¼ 1; 2; . . . ;m1 þ m2Þ (10)

Employing the Euler–Bernoulli beam theory, where the rotary inertia effects are ignored, the generalized
inertia forces F�i can be obtained with the following equation:

F�i ¼ �

Z L

0

r~aP
�
q~vP

q _qi

dx (11)

where _qi consists of _q1i and _q2i. Considering only stretching and bending effects, the strain energy of a
cantilever beam can be expressed as follows:

U ¼
1

2

Z L

0

EA
qs

qx

� �2

dxþ
1

2

Z L

0

EI
q2u2

qx2

� �2

dx (12)

The generalized active force Fi consists of F U
i and FI which results from the internal strain energy U and the

repeated impulsive force, respectively. So,

Fi ¼ FU
i þ F I

i ði ¼ 1; 2; . . . ;m1 þ m2Þ (13)

F U
i and F I

i can be obtained from the following equations:

F U
i ¼ �

qU

qqi

(14)

F I
i ¼

q~vQ

q _qi

�
X1
k¼0

I0dðt� ktI Þ

" #
dðx� LÞâ1 (15)
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Finally, the linearized equations of motion of the axially oscillating beam undergoing periodic impulsive
force can be obtained as follows:

Xm1
j¼1

M11
ij €q1j þ KS

ij q1j

h i
¼ �vo cos ot Pi �

X1
k¼0

I0dðt� ktI Þf1iðLÞ ði ¼ 1; 2; . . . ; m1Þ (16)

Xm2
j¼1

M22
ij €q2j þ KB

ij � vo cos o tKG
ij �

X1
k¼0

I0dðt� ktI ÞK
I
ij

 !
q2j

" #
¼ 0 ði ¼ 1; 2; . . . ;m2Þ (17)

where

Mab
ij �

Z L

0

rfaifbj dx (18)

KS
ij �

Z L

0

EAf1i;xf1j;x dx (19)

KB
ij �

Z L

0

EIf2i;xxf2j;xx dx (20)

KG
ij �

Z L

0

rðL� xÞf2i;xf2j;x dx (21)

KI
ij �

Z L

0

f2i;xf2j;x dx (22)

Pi �

Z L

0

rf1i dx (23)

Eqs. (16) and (17) represent the governing equations for stretching motion and bending motion,
respectively. Eqs. (16) and (17) are not coupled and the lowest stretching natural frequency is usually far
separated from a few lowest bending natural frequencies. So, the stability characteristics of the axially
oscillating beam will be investigated by using only Eq. (17). As shown in Eq. (17), there are three stiffness
terms: structural stiffness, motion-induced stiffness, and impulse-induced stiffness. This indicates that not only
the oscillating motion but also the repeated impulsive force can influence the stability characteristics of the
system.

Numerical integration will be employed to obtain the transient response while the impulsive force is not
acting. During the short duration of the impulsive force, however, the integration procedure will not be
employed. Instead, an impulse and momentum principle will be derived and employed to obtain the numerical
solution.

If the eigenfunctions of the beam (with no oscillating motion) are employed as mode functions for Eq. (17),
the following equation can be obtained:

€q2i þ L2
i q2i � vo cos ot

Xm2
j¼1

KG
ij q2j �

X1
k¼0

I0dðt� ktI Þ
Xm2
j¼1

KI
ijq2j ¼ 0 ði ¼ 1; 2; . . . ;m2Þ (24)

where Li indicates the ith natural frequency of the stationary beam. Now suppose the first impulse occurs at
t ¼ 0. Since the period of the oscillating motion is equal to that of the impulsive force, Eq. (24) can be
rewritten as follows:

€q2i þ L2
i q2i � vo cos ot

Xm2
j¼1

KG
ij q2j �

X1
k¼0

I0d t�
2kp
o

� �Xm2
j¼1

KI
ijq2j ¼ 0 ði ¼ 1; 2; . . . ;m2Þ (25)
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To obtain more general results and conclusions, Eq. (25) needs to be transformed into a dimensionless form.
For the purpose of the transformation, the following dimensionless variables need to be introduced:

x ¼
x

L
; t ¼

t

T
; Zi ¼

q2i

L
(26)

where

T ¼ ðrL4=EIÞ1=2

Using the dimensionless variables introduced in Eq. (26), Eq. (25) can be transformed as

€Zi þ o2
i Zi � lg cos gt

Xm2
j¼1

K̄
G

ij Zj �
X1
k¼0

i0d t�
2kp
g

� �Xm2
j¼1

K̄
I

ijZj ¼ 0 ði ¼ 1; 2; . . . ; m2Þ (27)

where oi’s denote the dimensionless natural frequencies which can be obtained by multiplying the natural
frequencies of the stationary cantilever beam by T and

K̄
G

ij ¼

Z 1

0

ð1� xÞci;xcj;x dx K̄
I

ij ¼

Z 1

0

ci;xcj;x dx (28)

l ¼
vT

L
; g ¼ oT ; i0 ¼

L2I0

EI
(29)

In Eq. (29), l denotes the dimensionless oscillating speed amplitude, g denotes the dimensionless oscillating
frequency (or the dimensionless impulsive force frequency), and i0 denotes the dimensionless impulse
magnitude.

Now if the damping effect is considered with modal damping model, Eq. (27) can be rewritten as follows:

€Zi þ 2zioiZi þ o2
i Zi � lg cos gt

Xm2
j¼1

K̄
G

ij Zj �
X1
k¼0

i0d t�
2kp
g

� �Xm2
j¼1

K̄
I

ijZj ¼ 0 ði ¼ 1; 2; . . . ;m2Þ (30)

where zi denotes the modal damping ratio for the ith natural frequency. The effects of the modal damping
ratio and the three dimensionless parameters l, g, and i0 defined in Eq. (29) on the stability characteristics of
the axially oscillating cantilever beam will be investigated in the next section.

3. Numerical results

The dynamic stability diagram of an axially oscillating cantilever beam (undergoing no impulsive force) is
shown in Fig. 2. The multiple scale perturbation method (see Ref. [4]) considering up to the second-order
expansions was employed to obtain the transition curves shown in the figure. The horizontal and the vertical
lines of the figure are mainly related to the dimensionless oscillating frequency g and the dimensionless
oscillating speed amplitude l which were defined in the previous section. As shown in the diagram, many
curves originate from several frequencies. The curves originating from op+oq are called the first-order
transition curves and those originating from (om+on)/2 are called the second-order transition curves.
Selection of a point in the diagram determines the stability characteristics of the oscillating beam. If the
selected point is located above the transition curves, the response of the oscillating beam will be diverged. For
instance, points A and B are located in the stable region and points C, D, E, and F are located in the unstable
region.

However, if the oscillating beam undergoes a periodic impulsive force, its stability characteristics can
change. Since the stability diagram of the system governed by Eq. (30) cannot be obtained with the multiple
scale perturbation method, a direct numerical integration technique along with the impulse and momentum
principle is employed to determine the stability.

To verify the accuracy of the present modeling method, the dynamic response results obtained with the
present modeling method are compared to those obtained with a nonlinear finite element code (see, Refs.
[21,22]). For the finite element code, an impulse is idealized as a half sine function (as shown in Fig. 3), where
Dt denotes the duration of the impulsive force and tI denotes the time to apply the impulsive force. Thus, the
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Fig. 3. Function profile of the impulsive force employed for the commercial finite element code.

Fig. 2. Stability diagram of the axially oscillating cantilever beam.
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area of an impulsive force is the amount of impulse I0 that can be obtained as follows:

I0 ¼

Z tIþDt

tI

F0 sin
pðt� tI Þ

Dt
dt (31)

To obtain the dynamic responses, seven bending modes are employed for the present modeling method and
ten beam elements are employed for the finite element code. The long term response will be affected by the
high-frequency modes as well as the low frequency modes if the damping is not present. However, the high-
frequency component will be damped out since the damping always exists in the real physical world. The
convergence of the solution was checked out as the number of modes is increased. Since seven bending modes
were found to be enough to obtain converged solutions, seven modes were employed in the following
numerical results.

The initial values of the displacement (which is assumed to be caused by the first bending mode) and the
velocity of the free end of the cantilever beam are given as 1% of the beam length and null, respectively. If a
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periodic impulse (which is caused by the repeated impact between the beam tip and an object like a fabric) is
applied to the free end point of the oscillating beam, the period of the impulse is equal to that of the oscillating
motion. In the following figures, the vertical dotted lines represent the moments at which the repeated
impulses are applied to the beam.

The values of l and g (corresponding to point A located in the stable region) along with the dimensionless
impulse magnitude employed to obtain the results are shown in Fig. 4. The results show that the stability is not
much affected by the repeated impulse. Point B is also located in the stable region. As shown in Fig. 5,
however, the stability is significantly affected by the repeated impulse. The repeated impulse causes the
Fig. 4. Comparison of the dynamic response results at point A obtained by the present modeling and the commercial finite element code:

(a) i0 ¼ 0 and (b) i0 ¼ 1.0.
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Fig. 5. Comparison of the dynamic response results at point B obtained by the present modeling and the commercial finite element code:

(a) i0 ¼ 0 and (b) i0 ¼ 1.0.
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unstable response shown in Fig. 5(b). Point C is located in the unstable region. Regardless of the repeated
impulse existence, both methods predict diverged responses. Point D is located in the unstable region, too. As
shown in Fig. 7(b), however, the repeated impulse results in the stable response. Figs. 4–7 show that the results
obtained with the present modeling method are in good agreement with those obtained with the nonlinear
finite element code. While the stability diagram (shown in Fig. 2) is plotted basing on the steady-state response
of the axially oscillating beam undergoing no repeated impulsive force, Figs. 4–7 show time responses (up to a
few periods) which are enough to exhibit the stability of the axially oscillating beam undergoing repeated
impulsive force.
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Fig. 6. Comparison of the dynamic response results at point C obtained by the present modeling and the commercial finite element code:

(a) i0 ¼ 0 and (b) i0 ¼ 1.0.
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Fig. 8 shows the dynamic responses obtained at two points E and F (shown in Fig. 2) by the present
modeling method. As shown in Fig. 8(a), the small amount of repeated impulsive force accelerates the
diverging trend at point E. On the contrary, at point F, relatively large amount of repeated impulsive force
could attenuate the diverging trend to stabilize the system as shown in Fig. 8(b).

The effects of the impulse magnitude, the oscillating speed amplitude and the oscillating frequency on the
dynamic stability of the axially oscillating cantilever beam are exhibited in Figs. 9 and 10. Fig. 9 shows the
maximum displacement contour map in the plane of the oscillating frequency and the impulse magnitude
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Fig. 7. Comparison of the dynamic response results at point D obtained by the present modeling and the commercial finite element code:

(a) i0 ¼ 0 and (b) i0 ¼ 0.5.

H.H. Yoo et al. / Journal of Sound and Vibration 320 (2009) 254–272264
obtained by the numerical integration (along with the impulse and momentum principle). The dimensionless
oscillating speed amplitude l and the damping ratio z employed to obtain the map are 1 and 0, respectively.
Using an ordinary personal computer, numerical integration is performed repeatedly by changing the
dimensionless impulse magnitude i0 and the dimensionless oscillating motion frequency g to obtain the
dimensionless maximum lateral displacement at the free end of the cantilever beam after 10 oscillating
motions. It can be shown from the figure that there exists a strong unstable region near 2o1. In general, if the
impulse magnitude is sufficiently large, it will destabilize the system. However, if the impulse magnitude
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Fig. 8. The repeated impulsive force effect on the dynamic responses at points D and E.
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remains proper, the stability can be maintained. For instance, if an impulse magnitude i0, which is less than
0.4, is imparted, the system remains stable except for the region around 2o1.

Fig. 10 shows the maximum displacement contour map in the plane of the oscillating speed amplitude and
the impulse magnitude. The dimensionless oscillating frequency g and the damping ratio z employed to obtain
the map are 10 and 0, respectively. The figure shows that if the oscillation speed amplitude exceeds a certain
limit, the system becomes always unstable. However, as mentioned previously, a proper amount of impulse
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Fig. 9. Maximum displacement contour map in the plane of the oscillating frequency and the impulse magnitude with no damping and

l ¼ 1.

Fig. 10. Maximum displacement contour map in the plane of the oscillating speed amplitude and the impulse magnitude with no damping

and g ¼ 10.

H.H. Yoo et al. / Journal of Sound and Vibration 320 (2009) 254–272266
magnitude can stabilize the system. For instance, Fig. 11 shows the variation of the system response at two
points A and B shown in Fig. 10. As shown in Fig. 11, a proper amount of impulse magnitude i0 ¼ 1 (at point
B) stabilizes the system response while the less amount of impulse magnitude i0 ¼ 0.1 (at point A) destabilizes
the system.



ARTICLE IN PRESS

Fig. 11. Impulse magnitude effect on the system response with no damping and g ¼ 10: (a) point A (1.3, 0.1) and (b) point B (1.3, 1.0).

H.H. Yoo et al. / Journal of Sound and Vibration 320 (2009) 254–272 267
To obtain the results shown in the previous figures, no damping effect was considered. To investigate the
effect of damping on the stability characteristics of the axially oscillating beam, some modal damping ratios
are employed to obtain the results shown in Fig. 12. In the present study, the first two modal damping ratios
are set to be same (i.e. z1 ¼ z2 ¼ z) and determined by the two Rayleigh damping constants a and b. The two
Rayleigh damping constants can be used to define a damping matrix as follows: [C] ¼ a[M]+b[K]. Therefore,
the Rayleigh damping constants a and b can be determined by the following equations: aþ bo2

1 ¼ 2zo1 and
aþ bo2

2 ¼ 2zo2. Once a and b are determined, other five modal damping ratios are determined by
aþ bo2

i ¼ 2zioiði ¼ 3; 4; . . . ; 7Þ. The commands of DAMPING_GLOBAL andDAMPING_PART_STIFFNESS
are employed in LS-DYNA to define a and b. Comparing to the result shown in Fig. 9, it can be easily



ARTICLE IN PRESS

Fig. 12. Maximum displacement contour map in the plane of the oscillating frequency and the impulse magnitude with two damping

effects and l ¼ 1: (a) z ¼ 0.1 and (b) z ¼ 0.5.

H.H. Yoo et al. / Journal of Sound and Vibration 320 (2009) 254–272268
found that the unstable region decreases as the modal damping ratio increases. Fig. 13 also shows that the
unstable region generally decreases as the damping ratio increases. However, even with a large damping ratio
(z ¼ 0.5 is practically large), the system becomes unstable as the oscillating speed amplitude exceeds a certain
limit. Again, the benefit of imparting a repeated impulse can be observed in Fig. 13. As the oscillating speed
amplitude l exceeds a certain value (for instance, approximately 1.3 when z ¼ 0.1) and increases, the impulse
magnitude i0 should be also increased to stabilize the system. In Fig. 13(a), points B and D are stable while
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Fig. 13. Maximum displacement contour map in the plane of the oscillating speed amplitude and the impulse magnitude with two

damping effects and g ¼ 10: (a) z ¼ 0.1 and (b) z ¼ 0.5.
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points A and C are unstable. Figs. 14 and 15 show the system responses at points A, B, C and D shown in
Fig. 13(a). As clearly shown in the results, the impulse magnitude i0 should be increased to stabilize the
system as the oscillating speed amplitude l increases. Comparing to Fig. 10, one can also see that the
upper limit of the impulse magnitude to maintain the stability can be extended with the increased modal
damping ratio.
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Fig. 14. Impulse magnitude effect on the system response at points A and B (shown in Fig. 13) with z ¼ 0.1 and g ¼ 10: (a) point A (1.40,

0.10) and (b) point B (1.40, 0.50).

H.H. Yoo et al. / Journal of Sound and Vibration 320 (2009) 254–272270
4. Conclusion

A linear computational model to analyze the stability characteristics of an axially oscillating beam
undergoing repeated impulsive force is proposed in this study. The proposed model shows that not only the
oscillating motion but also the repeated impulsive force can significantly influence the stability of the axially
oscillating beam. By employing a nonlinear finite element code, the accuracy of the proposed model is verified.
The effects of the repeated impulse magnitude, the oscillating speed amplitude, the oscillating frequency, and
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Fig. 15. Impulse magnitude effect on the system response at points C and D (shown in Fig. 13) with z ¼ 0.1 and g ¼ 10.: (a) point C (1.65,

0.10) and (b) point D (1.65, 1.25).

H.H. Yoo et al. / Journal of Sound and Vibration 320 (2009) 254–272 271
the modal damping ratio on the stability characteristics of the axially oscillating beam are investigated.
Generally, if the impulse magnitude exceeds a certain limit, it will destabilize the system. However, in certain
region, a proper amount of impulse magnitude can improve the stability of the system. Finally, as the modal
damping ratio increases, the unstable region in the contour map generally decreases. Furthermore, the benefit
of imparting periodic impulsive force to stabilize the system can be obtained more effectively with the damping
effect.
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